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I. Introduction 
Genetic epidem iology is increasingly focused on the study of com m on diseases with both genetic and

environm ental determ inants. The concept of gene-environm ent interaction is becom ing a central them e in
epidem iologic studies that assess causes of hum an disease in populations (1). Advances in genetic technology and the
work of the H um an Genom e Project will m ake it easier for the study of gene-environm ent interaction to becom e an
integral part of epidem iologic research. In this paper, we review epidem iologic concepts and definitions applied to
gene-environm ent interaction and give an overview of both traditional and em erging approaches to the study of gene-
environm ent interaction in epidem iologic research.

II. Concepts and M easurem ent of Interaction in Epidem iology
A. Evolving epidem iologic concepts and definitions of interaction

Over the last two decades, there has been m uch discussion about how to define and m easure interaction in
epidem iologic studies (2-12). M uch of this discussion focused on deriving the expression for the relative risk for
disease associated with exposure to m ultiple factors when the joint effects of these factors act through the sam e
pathogenetic pathway. Two m ajor definitions of interaction exist: statistical and biological (epidem iologic)
interaction. From  statistical perspective, the interaction of two or m ore risk factors is sim ply the coefficient of
product term  of these risk factors. Interaction is thus m easured in term s of a departure from  a m ultiplicative m odel
(27). The use of statistical interaction has several advantages: it has convenient statistical properties; it has the ability
to assess the extent of unknown confounding or bias; and it is easy to find a parsim onious m odels by keeping
statistical interactions to a m inim um  (10). H owever, this m ethod of m easuring interaction has been criticized as
ignoring any consideration of what constitutes interaction or synergy on the biological level, and as being inherently
arbitrary and m odel-dependent (7-8, 12).

In biological interaction m odel, interaction between two factors is defined as their coparticipation in the
sam e causal m echanism  to the disease developm ent (3, 8). Interaction is m easured in term s of a departure from  an
additive m odel (8). In this m odel, at an individual level, a causal interaction effect can be understood by a hypothetical
contrast of the outcom e of a single subject under different exposure conditions to develop a disease. For exam ple,



assum ing two dichotom ous risk factors (A and B) of a disease, a person would develop the disease at age 70 if
exposed to A only, at age 60 if exposed to B only, and at age of 50 if exposed to both risk factors. The portion of the
advance from  60 years of age to 50 years of age is called the interaction effect of A and B exposure. At the population
level, if two factors can cause a disease, som e cases of disease will involve exposure to both risk factors. In the
absence of either factors, these cases would not occur (12). Several m easurem ents and their confidence intervals were
developed to m easure the departure from  an additive m odel: relative excess risk due to interaction, and attributable
proportion due to interaction (8, 13-14). Studies also suggested that assessing interaction as departure from  additivity
is useful in assessing the public health im plications in diseases prevention and in individual decision m aking in
considering exposure to certain risk factors, such as sm oking and alcohol (15). 

B. Gene-environm ent interaction
There is accum ulating evidence that allelic variations of m any gene loci m ay play im portant roles in

determ ining individual susceptibility to cancer (16-20) and other chronic diseases (21-23). In assessing the role of
susceptibility alleles in disease risk, one should consider the effects of gene-environm ent interaction in disease
etiology. Gene-environm ent interaction m ay be m easured by the different effect of an exposure on disease risk am ong
individuals with different genotypes or by the different effect of a genotype on disease risk am ong individuals with
different exposures (24-25).

The concept of gene-environm ent interaction has long been recognized by geneticists (26), and occupied an
essential place in ecogenetic studies which exam ine the genetically determ ined differences am ong individuals in their
susceptibility to environm ental risk factors (27-29 ). In recent years, an epidem iologic fram ework for evaluating gene-
environm ent interaction has been proposed (24, 30-32). In a sim ple gene-environm ent interaction m odel, in which
both the susceptibility genotype at a single locus and the environm ent exposure are considered dichotom ous, one can
construct an extended 2-by-2 table incorporating genetic and environm ent factors in studying disease etiology (24).
Table 1 shows a sim ple gene-environm ent interaction m odel in the context of epidem iologic studies. For this sim ple
m odel, it is assum ed that unexposed individuals without the susceptibility genotype have a certain background risk for
disease I. R e refers to the relative risk for disease am ong people without the susceptibility genotype for disease who
are exposed to the environm ental risk factor relative to those with neither the susceptibility genotype nor exposure. R g

refers to the relative risk am ong people with the susceptibility genotype who are not exposed to the environm ental
risk factor relative to those with neither the susceptibility genotype nor exposure. R ge is the ratio of disease risk
am ong exposed people with susceptibility genotype to disease risk am ong unexposed people without the susceptibility
genotype. This ratio reflects the strength of the gene-environm ent interaction.

Based on this sim ple gene-environm ent interaction m odel, the effects of six biologically plausible patterns of
interaction on the relative risk of disease has been proposed (24)(Table 2). In type 1 interaction, the increased risk of



diseases was only observed when both genetic and environm ental factors coparticipate in the sam e pathogenetic
m echanism , either the genotype alone nor the exposure alone causes excess risk (i.e., R g = Re = 1). In type 2
interaction, environm ental exposure increases risk in individual without the corresponding genotype. In type 3
interaction, the genotype (R g > 1) is associated with increased disease risk, whereas the exposure alone is not. In type
4 interaction, both the genotype and the environm ental exposure are each associated with excess risk of disease (R g >
1, R e > 1). Type 5 and 6 interaction occur when there is a reversal of the genotype=s effect, depending on the presence
or absence of the environm ent. In this case, the genotype is protective in the absence of the environm ent (Rg < 1), but
is deleterious in the presence of the environm ent (Rge > 1). O ttm an (31) also proposed a sim ilar m odel of studying
gene-environm ent interaction in etiology of disease. This is a sim plified gene-environm ent interaction m odel, the
effects of gene-environm ent interaction on the m easured phenotype are further com plicated by the num ber of genetic
loci involved and m ultiple environm ental exposure factors, the m oderation of the genetic effects, the dose of the
environm ental exposure, and the presence of etiologic heterogeneity (24, 31). M ost studies have evaluated gene-
environm ent interaction in term s of the departure from  those predicted by the m ultiplicative m odel (33-34). Som e
investigators have suggested that m any biologically plausible m odes of gene-environm ent interaction involve extrem e
departures from  m ultiplicative effects (35). For exam ple, neither phenylalanine hydroxylase deficiency alone nor
exposure to phenylalanine in the diet cause phenylketonuria (PKU); both m ust be present for PKU to develop (24).
The gene-environm ent interaction m ay also be evaluated in term s of the departure from  those predicted by the additive
m odel. 

III. Gene-Environm ent Interaction in Traditional Epidem iologic Studies
A. Strategies

The m ain em phasis of gene-environm ent interaction studies is not to localize the disease susceptibility genes
or to find the inheritance patterns of the diseases, but rather to better understand the etiology and pathogenesis of the
diseases through quantitative assessm ent of diseases risks in various populations (24, 31-32, 36-37).

Two types of genetic m arkers are used in gene-environm ent interaction studies: m arkers based on direct
analysis of the DNA, and m arkers based on gene products such as specific blood groups, H LA antigens, serum
proteins, and enzym e system s. W hen genetic m arkers are not available, fam ily history data are som etim es used as a
rough indicator of genetic susceptibility, though there is a potential for significant m isclassification in using fam ily
history data in genetic epidem iologic studies (38-39 ).

W ith rapid advances and progress in m olecular genetic technology and hum an genom e project, the num ber of
genetic m arkers and polym orphism s for all genes in hum an available for research will increase rapidly in the near
future. The studies of gene-environm ent interactions are m ost m eaningful when applied to functionally significant



variations in candidate genes which have a clear biological relation to or suspected of playing som e role in the
pathogenesis of disease (40-41). 

B. Study design
If one views the gene-environm ent interaction as the genetic control of sensitivity to the environm ental

exposure, and genetic factors are regarded as one of the host characteristics, then gene-environm ent interaction can be
analyzed through the use of the traditional epidem iologic study design: cohort, cross-sectional, and case-control
studies.

W hen a relatively high num ber of polym orphic m arkers are located close to candidate gene loci, the case-
control approach is a popular and effective m eans by which to study differences in genetic susceptibility and gene-
environm ent interaction (24, 33). In a case-control design, the genetic m arkers and relevant environm ental risk factors
are each exam ined as independent predictors of disease and as interacting factors with the environm ental exposures.
The odds ratio of gene-environm ent interaction (Rge) can be calculated as shown in Table 1. Exam ples of recent case-
control studies include a study of interaction effects between m aternal cigarette sm oking and a transform ing growth
factor alpha (TGFA) polym orphism  and the risk of oral clefts (42). The odds ratios for the exposure to sm oking
alone, or the TGFA genotype alone are close to unity, whereas the com bined odds ratio for sm oking and the genotype
is 5.5 (9 5% C.I. 2.1-14.6), indicating evidence of gene-environm ent interaction for risk of oral clefts in offspring
(42).

In a cohort study design, the environm ental exposures and genetic risk factors are m easured for all subjects
at the start of follow-up (baseline) and possibly during follow-up. Despite of som e m ajor strengths of cohort study
design (disease occurs or is detected after subjects are selected, and m inim ized selection bias), few cohort studies
used genetic m arkers to test for effects of gene-environm ent interaction in disease etiology. It is partly due to the fact
that the rapid developm ent of m olecular techniques are only seen recently and the m ain stream  of genetic analysis are
to find the disease susceptibility genes. W ith the advances in m olecular techniques and the findings of m ore candidate
genes, one would expect to see increasing num ber of cohort studies to exam ine gene-environm ent interaction.

In cross-sectional design, the investigators random ly sam ple a set of individuals from  a study population
through a single ascertainm ent of disease prevalence. Individuals with different genetic and environm ent risk
characteristics are com pared with respect to the prevalence of the condition, and gene-environm ent interaction can
also be tested (24). An exam ple is the cross-sectional W H O -cardiac study of gene-environm ent in hypertension,
stroke and atherosclerosis (43). Although cross-sectional designs are less tim e-consum ing and able to exam ine m any
exposures and disease in the sam e study, the lim itation of cross-sectional design for m aking causal inferences m ade
its design less popular in the study of gene-environm ent interaction.

A num ber of case-control studies are including a fam ilial com ponent, for exam ple, a fam ily history of the



disease studied. The designs and som e problem s of the case-control studies incorporating fam ily history are discussed
in the epidem iologic literature (1, 34, 44). The study of fam ilial aggregation in case-control studies can be extended
by incorporating environm ental covariates and their interaction with fam ily history (45).

C. Choice of Controls: Population vs Fam ilies
In assessing gene-environm ent interaction, investigators can select control subjects either from  the general

population or from  fam ilies, depending on the purpose of the study. If the investigators are assessing the prevalence of
disease susceptibility genotypes in the general population and exam ining the interactions of those genotypes with
environm ental exposures for the risk of a disease concerned, investigators should use a population-based study design
to choose control subjects.

Investigators assessing fam ilial aggregation of a disease, evaluating whether such aggregation is caused by
the presence of gene-environm ent interaction, should select control subjects from  fam ily-based study designs.
Because the purpose of the study is not to m ake inferences to the general population, but to exam ine the fam ilial
aggregation of a disease. The fam ily m em bers are the only appropriate control subjects which will provide relevant
inform ation for the purpose of study (1).

D. Methodologic Issues in assessing gene-environm ent interaction
M is-specification

In the presence of gene-environm ent interaction, quantifying the m ain effects of environm ental factor alone
or genetic factor alone can lead to m is-specification of the study m odel, and m ay m iss im portant clues to the etiology
of disease (46). 

Errors of environm ental exposure m easurem ent
Precise m easurem ent of an individual=s exposure to environm ental risk factors are shown to be

difficulty because of the individual=s ignorance of previous opportunity for exposure, the com plex pattern of m ost
long-term  exposures, the lack of good biological indicators of exposure levels, and the lack of sufficient sources to
collect individual exposure data on large populations (45). In the study of gene-environm ent interaction, the
consequences of environm ental exposure m ism easurem ent can lead to bias in the estim ation of interaction effects and
possible loss of precision and power with which interaction effects are estim ated (24). Nondifferential
m isclasification is usually biased toward the null value, and differential m isclassification m ay produce biased results
in either direction. In addition to the errors of environm ental exposure m easurem ent, the tim ing of exposure during a
developm entally im portant window is also im portant in exam ining gene-environm ent interaction. For exam ple, the
tim ing of the exposure to environm ental exposure during the pregnancy and the developm ent of a birth defect for a



genetically susceptible fetus. 

Genotype m isclassification
W hen m easuring individuals= genotypes at the DNA level, m isclassification can occur because of linkage

disequilibrium  (24, 47). Until a com prehensive catalog of com m on variants of all genes is developed, investigators
m ust rely on genetic m arkers in the region of the candidate genes or in a nonexpressed portion of the genes in order to
conduct m any DNA m arker-disease association studies. Under these circum stances, the observed differences in
prevalence of a m arker allele between case and com parison groups could be a result of linkage disequilibrium  unless
the actual sites of a deleterious variation involved in the disease are targeted (24, 48-49 ). Under linkage
disequilibrium , Nondifferential m isclassification can occur, and this m isclassification m ay bias estim ates of relative
risk toward the null (i.e. OR = 1). Individual genotypes can also be m easured by indirect m ethods. For exam ple, som e
investigators used dapsone loading followed by urinary m easurem ents of different m etabolites to classify subjects as
slow or fast acetylators in a case-control study of bladder cancer (50-51). Such indirect m easures can lead to
m isclassification of the underlying genotypes of individuals. This type of m isclassification is often independent and
nondifferential. H owever, the argum ent that independent and nondifferential m easurem ent errors produced bias only
toward the null m ay not apply to assessm ents of gene-environm ent interaction. As with all types of interactions,
independent and nondifferential m isclassification m ay bias interaction estim ates in any direction (12). Occasionally,
genotype m isclassification m ay be differential if the m easurem ent m ethod is affected by disease status itself or if a
near-by gene is associated with the disease; such differential m isclassification will further com plicate the assessm ent
of gene-environm ent interaction (1). 

Confounding
Confounding is a m ajor problem  in evaluating gene-environm ent interaction. It can involve population

subgroups with different genetic m arkers and disease frequencies. Unm easured genetic determ inants and
environm ental exposures can each act as confounders that could produce spurious associations. Race or ethnicity is
an im portant source of confounding in studies of gene-environm ent interaction (52). One exam ple is the reported
association between the genetic m arker Gm 3;5;13;14 and non-insulin-dependent diabetes m ellitus am ong the Pim a
Indians (53). In a cross-sectional study of this association, individuals with the genetic m arker Gm 3;5;13;14 were
found to have a higher prevalence ratio of the disease than those without the m arker (29% vs.8%). This m arker,
however, turned out to be an index of white adm ixture. W hen the subjects of the analysis were stratified by degree of
adm ixture, the higher prevalence of diabetes associated with the m arker disappeared.

Confounding of interaction and dose-response



In traditional epidem iologic studies, dose-response relations refer to the changes in risk produced by changes
in a single exposure, and interaction refers to changes in risk produced by two or m ore exposures. Dose-response
relations and interaction m ay tend to confound one another (54). In assessm ents of the effect of gene-environm ent
interaction on disease risk, the risk in disease associated with a certain genotype m ay vary depending on the
environm ental exposure, or the risk m ay be restricted to exposed persons only. Sim ilarly, the effects of environm ental
exposures m ay vary depending on the genotype of the exposed person (25). For exam ple, people who are slow
acetylators of N-acetyltransferase 2 (NAT2) have an increased risk for bladder cancer, and the risk for bladder cancer
associated with sm oking m ay vary by NAT2 status (55). For slow acetylators of NAT2, current sm oking and sm oking
in the distant past increased breast cancer risk in a dose-dependent m anner. Those in the highest quartile (heavy
sm okers in the study) of cigarettes sm oked 2 years previously were 4.4 (9 5% CI, 1.3-14.8) tim es m ore likely to
develop breast cancer than those who never sm oked (56). Failure to adequately m odel dose-response relations can
lead to bias in gene-environm ent interaction estim ates. 

Sam ple size requirem ents for m easuring gene-environm ent interaction
In an epidem iologic study of a given sam ple size, the power to detect statistical interactions is less than the

power to detect m ain effects, and the variance of the interaction estim ate will also be greater than the variance of the
m ain effects estim ate under a no-interaction m odel (7, 57-58). Several investigators exam ined the sam ple size and
power calculation needed to detect gene-environm ent interaction in case-control studies (59-61). The data needed to
calculate the sam ple size required to detect gene-environm ent interaction can be shown by a 2-by-4 table as is done in
Table 3. This table lists six param eters: 1) The odds ratio of interaction (Rge); 2) The odds ratio of having the disease
am ong exposed individuals without the susceptible genotype relative to those with neither the susceptibility genotype
nor exposure (R e); 3) the odds ratio of having the disease am ong people with susceptible genotype but without
environm ental exposure relative to those with neither the susceptibility genotype nor exposure (R g); 4) the prevalence
of exposure in the population (e); 5) the prevalence of the genotype in the population (g); 6) the case/control ratio
(59-60). The results of several studies have suggested that when the frequency of exposure is not extrem ely low or
high, and the susceptible genotype is com m on, a m odest sam ple size will be adequate to detect gene-environm ent
interaction. For exam ple, when the frequency of exposure and the prevalence of the genotype both range between 30%
to 70%, about 200 case subjects and 400 control subjects (for case/control ratio 1:2) should be adequate to detect an
odds ratio of gene-environm ent interaction (Rge) greater than 4 with 80% statistical power (60). H owever, the
susceptible genotypes for m any com m on diseases are relatively rare, with prevalence ranging from  1 to 5%, and both
the genotype alone (R g) and exposure alone (R e) have m oderate effects on risk for disease. For exam ple, the frequency
of the BR CA1 185delAG am ong Ashkenazi Jews (62) is about 1%, and the odds ratios for BRCA1 (Rg) is about 2



(38, 63); therefore, a relatively large num ber of case and control subjects are needed to detect gene-environm ent
interaction (usually m ore than 1,000 cases)(60). W ith such diseases, alternative approaches to detecting gene-
environm ent interaction m ay be needed. These approaches include 2-tier sam pling strategies (64-65), fam ily or
sibling-based designs (61), and case-only designs (66). 

IV Gene-environm ent Interaction in Nontraditional Epidem iologic Studies

Concerns about selecting appropriate control subjects for case-control studies have led to the developm ent
of several nontraditional approaches in the study of genetic factors in disease (1, 34). These approaches involve the
use of an internal control group rather than an external one. W e will review three of these nontraditional approaches
in detecting gene-environm ent interaction: 1) the case-only study, 2) the case-parental control study, and 3) the
affected relative-pair study. Except for the case-only design, these nontraditional approaches were not developed with
the intention of evaluating gene-environm ent interaction. Table 4 sum m arizes the features of these studies, including
their assum ptions, strengths, and lim itations. W e also briefly review use of the twin study to evaluate gene-
environm ent interaction. 

A. Case-only studies
The case-only design has been prom oted as an efficient and valid approach to screening for gene-

environm ent interaction under the assum ption of independence between exposure and genotype in the population (67-
68). If one=s prim ary interest is in assessing possible interaction between genetic and environm ental factors in the
etiology of a disease, one m ay do so without em ploying control subjects. The basic set up for a case-only design is a
2-by-2 table (Table 5). The odds ratio calculated from  a case-only design is related to the odds ratios for the exposure
alone, the genotype alone, and their joint effects in the case-control design by the following form ula:

O R ca = Rge/(Re*R g) * O R co, 

where O R ca  is the case-only odds ratio, and ORco is the odds ratio am ong control subjects relating the exposure and
the susceptibility genotype. Assum ing independence between the genotype and the exposure in the population, the
expected value of O R co becom es unity, and the odds ratio obtained from  a case-only study m easures the departure
from  the m ultiplicative joint effect of the genotype and the exposure. Under the null hypothesis, O R ca = 1; O R ca > 1 if
the joint effect is m ore than m ultiplicative; and ORca < 1 if the joint effect is less than m ultiplicative (e.g., additive)
(34). Confidence intervals of case-only odds ratio can be obtained by using standard crude analyses or logistic m odels
that control for the effects of other covariates.



Table 6 shows data from  a case-control study of the association between cleft palate, m aternal sm oking and
TGFA polym orphism  derived from  H wang et al. (42). The case-only ORca of 5.1 (9 5% CI, 1.5-18.5) calculated from
H wang et al. (42) can be com pared with the odds ratio of the interaction 5.5 (9 5% CI 2.1-14.6) derived from  their
case-control study. Both odds ratios suggest a significant interaction between TGFA polym orphism  and m aternal
sm oking in the risk for cleft palate am ong the offspring. Study has shown that the case-only design requires fewer case
subjects than case-control design to detect gene-environm ent interaction (66).

In applying the case-only design to test gene-environm ent interaction, investigators assum e independence of
the distribution of exposure and genotype in the population. This assum ption m ay seem  reasonable for a wide variety
of genes and exposures, but there are som e genes whose presence m ay be associated with a higher or lower likelihood
of the exposure on the basis of som e biologic m echanism s (34). The gene-environm ent interaction (ORca) derived
from  a case-only design assum es a departure from  m ultiplicative effects. Studies have shown that m any biologically
plausible m odes of gene-environm ent interaction involve a departure from  m ultiplicative effects (35). If the true
underlying m odel of joint effect is additive, the odds ratio of interaction (ORca) derived from  a case-only design is
questionable.

B. Case-parental control studies
The case-parental design m ay be an effective m ethod of dealing with the effects of confounding by

population stratification (69-71). In addition, when disease alleles are com m on and have m odest effects, an
association study m ay provide a m ore sensitive test for linkage between genetic m arkers and disease susceptibility
genes than the classical linkage analysis (41). Several m ethods (72-77) com bine the advantages of linkage and
population association analyses and also take into account the effect of confounding. All these m ethods consider the
alleles found in the parents of an affected offspring and com pare transm itted and untransm itted alleles of parents to
the affected offspring (transm ission/disequilibrium  test). Investigators using these m ethods can com pare the genotype
of the affected offspring with the genotype of a fictitious control subject carrying the nontransm itted alleles from  each
parent. The 2-by-2 table used in such a com parison is shown in Table 7. Odds ratios can be calculated in an analysis
following that of a m atched-pair design  (34). To test gene-environm ent interaction, investigators can stratify case
subjects according to their environm ental exposure status (presence or absence) and can use the difference of odds
ratios derived with and without the environm ental exposure as an indication of departure from  m ultiplicative
interaction (34). 

One lim itation of this m ethod could be that the Acontrol@ group m ay not be representative of the underlying
population at risk, especially when certain parental genotypes associated with disease status m ay interfere with
reproduction. In other study (78), investigators proposed using a noniterative m ethod, which com pares risk am ong
those with a specific genotype with the risk am ong those with a com parison genotype. To study gene-environm ent



interaction, investigators can stratify on the environm ental factor to obtain stratum - specific estim ates of the disease-
gene association, and the difference in the stratum - specific estim ates reflect gene-environm ent interaction (78).

The need for the parents of the case subjects to be genotyped is another lim itation of case-parental approach.
The parental m arker data m ay not be available for som e case subjects, especially in studies of the genetic etiology of
diseases with older age at onset. In other studies, investigators developed a m ethod using m arker inform ation on all
m em bers of a nuclear fam ily to infer the probability distribution of m issing parental m arker data (79 ).

C. Affected relative-pair studies
     The third type of nontraditional epidem iologic m ethod that can be used to test gene-environm ent interaction is the
affected sib-pair or affected relative-pair m ethod (80-84). In sib-pair analysis, investigators determ ine whether each
sib-pair shares 0, 1, or 2 alleles identical by descent (IBD) at a locus of interest. Under random  segregation, the
expected distribution of sharing 0, 1, or 2 alleles is 25%-50%-25% between two siblings IBD. Departure from  this
distribution suggests linkage between the disease and the m arker locus (84).

In contrast to the case-only and case-parental approaches, the sib-pair m ethod is prim arily used to test for
genetic linkage when the genetic m odel underlying the disease is not known, especially for the diseases involving
com plex traits (1). The sib-pair m ethods can be incorporated into fam ily-based epidem iologic studies (cohort and
case-control designs): such incorporation allows investigators to control for suspected nongenetic risk factors and to
test for gene-environm ent interaction in searching for genetic linkage (85-86). To look for gene-environm ent
interaction using this m ethod, investigators can stratify the affected individuals by their exposure status or incorporate
the gene-environm ent interaction term  in a m ultivariate analysis. For exam ple, they can use logistic regression when
testing for genetic linkage (86-87). The basic set-up for analyzing gene-environm ent interaction through sib-pair
analysis is shown in Table 8. The difference of odds ratios for diseases between exposed and unexposed individuals
are taken as an indication of gene-environm ent interaction. 

The sib-pair m ethod requires fam ilies with at least one affected m em ber in addition to the proband. This
requirem ent restricts the num ber of fam ilies for which this analytic m ethod can be used. Because the affected relative-
pair approach assum es M endelian transm issions for expected distributions, any departure from  independent
segregation and random  assortm ent could affect the results. Finally, selection factors, including survival, chronicity,
and m ethod of case ascertainm ent, m ay substantially affect the types of case subjects that could be available for this
analysis (78, 86).

D. Twin studies in gene-environm ent interaction
The prem ise behind twin studies is that, because m onozygotic twins (MZ ) have 100% of their genes in

com m on whereas dizygotic twins (DZ ) have only 50% of their genes in com m on, an excess disease concordance



am ong  MZ  twins m ay reflect a greater role of genetic factors. Several investigators have extended the classical twin
study to test for gene-environm ent interaction (25, 88-89 ). For exam ple, O ttm an (25) developed a m ethod to test for
gene-environm ent interaction on disease risk conditional on twin exposure status and genotype. This m ethod involved
two m easures of relative risk: 1) relative risk for disease am ong exposed vs. unexposed cotwins, stratified by zygosity
and proband exposure status (R R e), and 2) relative risk for disease am ong MZ vs DZ cotwins, stratified by exposure
status of the proband and cotwin (RRz). O ttm an then exam ined the behavior of the two m easures under different
assum ptions about the relative effect of exposure and genotype on disease. R R e reflects the effect of exposure on
disease risk. W hen gene-environm ent interaction is present, R R e is expected to differ between M Z  and DZ  twins
because of their different probabilities of having the high risk genotype. R R z reflects the effect of genotype on disease
risk. W hen gene-environm ent interaction is present, R R z is expected to differ between exposed and unexposed twins.
In another study, investigators used a case-control design to calculate the odds ratios for disease am ong affected vs
unaffected cotwins and com pared these odds ratios am ong the various strata defined by exposure in the index twin.
Gene-environm ent interaction is indicated by the difference in odds ratios by stratified environm ental exposures (89 ).
R ecently, other investigators extended the twin study m ethod by including the half-siblings in a study of genetic and
environm ental factors in the etiology of disease (9 0). Given the possible confounding by shared environm ental factors
(intrauterine and postnatal) and selection factors, the effects of gene-environm ent interaction obtained from  twin
studies should be interpreted with caution (1).

V. Som e recent Developm ents

A. Linkage vs association studies
R ecently, investigators argued that traditional linkage analysis has lim ited power to detect genes with m odest

effects, and suggested that association studies (Case-parental and affected sib-pair studies described in this review are
form s of association studies) have m ore statistical power to detect genes of m odest effect (41, 9 1). The key lim itation
for association study is that the actual gene or genes involved in the disease m ust be tentatively identified before the
analysis can be carried out (41). H owever, with the rapid developm ent of H um an Genom e Project and identification
of m ajor variants of hum an genes, association studies m ay becom e im portant m ethods of the future genetic analysis
of com plex traits and gene-environm ent interaction.

B. Population-based fam ily study design
R ecently, som e investigators proposed using a m ulti-stage population-based fam ily study design , which

com bines features of fam ilial genetic studies (linkage and segregation) and population-based association studies. The
case-control fam ily study design is the m ost im portant part of the proposed population-based fam ily design. The



investigators suggested that gene-environm ent interaction in disease etiology can be incorporated in this study design
(9 2).

C. Variance com ponent approach
The variance com ponent approach has been used m ainly in the analysis of fam ilial aggregation for

quantitative traits (9 3-9 4). R ecently, investigators have extended the variance com ponent approach to the analysis of
dichotom ous traits (9 5) and to a study of the gene-gene (epistasis) interaction in linkage analysis (9 6). O thers have
discussed extending this approach to include gene-environm ent interaction in linkage analysis for both quantitative
and qualitative traits (9 7). 

VI Conclusion
In this paper we attem pted to provide an overview of both traditional and non-traditional epidem iologic

approaches to studying gene-environm ent interaction. There is little doubt that studies of com plex traits in hum an will
assum e a central place in the future genetic analysis of com m on hum an diseases (40). It is believed that hum an
com m on diseases are m ore likely to involve m ultiple genes with m odest effects and gene-environm ent interaction
(37, 40). The m odest effects of these genes m ay indicate that a larger proportion of the disease in the population m ay
be attributed to these genes.

W ith advances in genetic technology and the work of the H um an Genom e Project, m ethods of studying gene-
environm ent interaction will continue to evolve, and the concept of gene-environm ent interaction will becom e a
central them e in epidem iologic studies that assess causes of hum an disease in populations.
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Cohort Study                 Case-control study           

Exposure
(1=present, 0=absent)

Susceptibility
Genotype

Disease Risk Relative Risk Cases Controls Odds Ratio

0 0 I 1 A00 B00  1

0 1 IRg Rg A01 B01 Rg=A01B00/A00B01

1 0 IRe Re A10 B10 Re=A10B00/A00B10

1 1 IRge Rge A11 B11 Rge=A11B00/A00B11

Table 1. A Simple Gene-Environment Interaction Model in the Context of Epidemiologic Studies

I refers to the background disease risk, incidence of disease among members of the cohort
who are not exposed to the environmental factor and who are genotype negative.
Re  = disease risk among persons with the exposure without the genotype divided by disease risk among persons with no exposure and no susceptible genotype.
Rg  = disease risk among persons with the genotype without the exposure divided by disease risk among persons with no exposure and no susceptible genotype.
Rge  = disease risk among persons with the exposure and genetype divided by disease risk among persons with no exposure and no susceptible genotype.



Table 2. Six Patterns of Gene-Environment Interaction

_________________________________________________________________
Effects on Disease Risk of 

Patterns Genotype in absence of  Environment in absence of 
environment genotype

_________________________________________________________________
1 No effect Rg = 1 No effect Re = 1

2 No effect Rg = 1 Increase risk Re > 1

3 Increase risk Rg > 1 No effect Re = 1

4 Increase risk Rg > 1 Increase risk Re > 1

5 Decrease risk Rg < 1 No effect Re = 1

6 Decrease risk Rg < 1 Increase risk Re > 1

________________________________________________________________ 

Source: Khoury et al. 1993 (24).

Re  = disease risk among persons with the exposure without the genotype divided by disease risk among persons with no exposure
and no susceptible genotype.
Rg  = disease risk among persons with the genotype without the exposure divided by disease risk among persons with no exposure
and no susceptible genotype.



Table 3. Parameters of Gene-Environment Interaction Analysis in a Case-Control Design

________________________________________________________________________

Susceptibility 

Exposure Genotype Cases Controls Odds Ratio

________________________________________________________________________

   - -      (1-g)(1-e) (1-g)(1-e) 1.0      

       3

   - + g(1-e)Rg g(1-e) Rg    

     3

   + - e(1-g)Re e(1-g) Re     

    3

   +      + geRge     ge Rge

  3

________________________________________________________________________

e    =  prevalence of exposure in the population.
g    =  prevalence of genotype in the population.
Re  = disease risk among persons with the exposure without the genotype divided by disease risk among persons with no exposure
and no susceptible genotype.
Rg  = disease risk among persons with the genotype without the exposure divided by disease risk among persons with no exposure
and no susceptible genotype.
Rge  = disease risk among persons with the exposure and genetype divided by disease risk among persons with no exposure and no
susceptible genotype.

3  =  (1-g)(1-e) + g(1-e)Rg + e(1-g)Re +geRge



Feature Case-Only Case-Parental Control Affected Relative-Pair

Study subjects Cases Cases and their parents Proband, second case
in family, and parents

’Controls’ None Expected genotype
distribution based on
parental genotypes

Expected distribution of
alleles with Mendelian
transmission

Assessment Departure from
multiplicative
relationship between
exposure and genotype

 Association between
genotype and disease

Linkage between locus
and disease

Assumptions Independence between
genotype and exposure

Mendelian transmission Mendelian transmission

Limitations Cannot assess effects
of exposure on
genotype. Linkage
disequilibrium.

Requires one or both
parents. Cannot assess
exposure effects.
Linkage disequilibrium.

Need families with 2 or
more cases. Cannot
assess exposure.
Cannot assess specific
alleles.

Table 4. Characteristics of Case-Only, Case-Parental and Affected Sib-pair Studies 

Source: Khoury, 1997 (1)



Table 5. Gene-Environment Interaction Analysis in the Context of a Case-Only Study
_______________________________________________________
   
Exposure Susceptibility Genotype

- +
________________________________________________________

   - a b

   + c d

_______________________________________________________

a = ((1-g)(1-e)) / 3  
b = ((1-g)eRe) / 3
c = ((1-e)gRg) / 3
d = (geRge) / 3

e    =  prevalence of exposure in the population.
g    =  prevalence of genotype in the population.
Re  = disease risk among persons with the exposure without the genotype divided by disease risk among persons with no exposure and no
susceptible genotype.
Rg  = disease risk among persons with the genotype without the exposure divided by disease risk among persons with no exposure and no
susceptible genotype.
Rge  = disease risk among persons with the exposure and genetype divided by disease risk among persons with no exposure and no
susceptible genotype.

3  =  (1-g)(1-e) + g(1-e)Rg + e(1-g)Re +geRge

Under assumption of independence between exposure and 
genotype among controls: case-only odds ratio (ORca)= ad/bc. ORca is related to case-control ORs by ORca = Rge/(Re*Rg). 



Table 6. Case-Control Analysis of the Interaction Between Maternal Cigarette Smoking and
Transforming Growth Factor Alpha Polymorphism in Determining Children’s Risk for Cleft Palate
______________________________________________________________________________

Smoking TaqI Cases Controls Odds 95% C.I.
  Polymorphism Ratio

______________________________________________________________________________
- - 36 167 1.0 Referent

- +  7  34 1.0 0.3-2.4

+ - 13  69 0.9 0.4-1.8

+ + 13  11  5.5 2.1-14.6
______________________________________________________________________________

Sources: it is derived from Hwang et al. (42).
Odds ratio based on a case-only study is 5.1 (95% CI 1.5-18.5)(36 * 13)/(13 * 7).



Table 7. Gene-Environment Interaction Analysis in the Context of a Case-Parental Control Study:
Analysis of Nontransmitted Alleles

______________________________________________________________

 Exposure status: Absent Case genotype
S +

Parental non- - T0 U0

transmitted
alleles

+ V0 W0

______________________________________________________________
OR among unexposed people 1 U0/V0

Exposure status: Present Case genotype 

S +

Parental - T1 U1

non-transmitted
alleles

+ V1 W1

______________________________________________________________
OR among exposed people 1 U1/V1

Source: Khoury and Flanders, 1996 (34).



Table 8. Gene-Environment Interaction Analysis in the Context of an Affected Sib-Pair Study 

_______________________________________________________________________________
No. Alleles Unexposed Exposed Expected  Odds  Odds
ibd with case case  Ratio  Ratio
proband  (unexposed) (exposed)
_______________________________________________________________________________

 0 A00 A01 0.25 1.0 1.0

1 A10 A11 0.50  A10/2A00 A11/2A01

2 A20 A21 0.25  A20/A00 A21/A01

_______________________________________________________________________________

Source: Khoury, 1997 (1).


